

TECHNICAL APPROACH DESIGN AND

DEVELOPMENT OF RESTFUL WEB SERVICES

Army Training Information Architecture-Migrated (ATIA-M)
System Sustainment Services

Contract: W911S0-12-C-0036

10 DECEMBER 2012

Prepared for:
U.S. Army Training Support Center (ATSC)

Attn: TCM-ATIS
Building 3308

Fort Eustis, VA 23604-5166

Submitted by:

ZCSolutions, LLC
1600 Tysons Boulevard, Suite 1150

McLean, VA 22102

ZCSolutions Army Training Information-Migrated (ATIA-M) System Sustainment Services

10 December 2012 Technical Approach Design And Development of RESTFul Web Services 2

REVISION RECORD

Version Description Date Submitter

1.0 Initial draft 10 Dec 2012 B. Craig

ZCSolutions Army Training Information-Migrated (ATIA-M) System Sustainment Services

10 December 2012 Technical Approach Design And Development of RESTFul Web Services 3

Table of Contents
1 Purpose ... 4

2 Goal ... 4

3 Representational State Transfer (REST) .. 4

3.1 HTTP Request Methods .. 4

3.1.1 GET .. 4

3.1.2 PUT .. 4

3.1.3 POST .. 5

3.1.4 DELETE ... 5

3.1.5 HEAD ... 5

3.1.6 OPTIONS .. 5

3.2 Safety and Idempotencey ... 5

3.3 REST Principles .. 5

4 RESTful Resource-Oriented Architecture .. 5

4.1 The Resource ... 6

4.2 The Resource URI .. 6

4.3 The Resource Representations ... 6

4.4 The Links between .. 6

5 Service Design ... 6

6 Client ... 6

7 Rules .. 7

7.1 URI Format .. 7

7.2 URI Path Design ... 7

7.3 URI Query Design .. 7

7.4 Request Methods .. 7

7.5 Response Methods ... 7

7.6 HTTP Headers .. 8

7.7 Representation Design .. 8

ZCSolutions Army Training Information-Migrated (ATIA-M) System Sustainment Services

10 December 2012 Technical Approach Design And Development of RESTFul Web Services 4

1 Purpose
This document serves as the TCM-ATIS technical approach and guide for developers and its participating
clients in the design, development, and implementation of RESTful web services following a Resource
Oriented Architecture (ROA) set of principles.

2 Goal
The goal of this document is to help developers understand how to design and implement RESTful web
services following the TCM-ATIS approach. By following this guide, developers should gain sufficient
knowledge and understanding on how to produce RESTful web services and corresponding clients
quickly and consistently in varying programming languages.

3 Representational State Transfer (REST)
Representational State Transfer (REST) describes an architectural style commonly used in the HTTP

context however it is not limited to the HTTP protocol. With regard to its use in the HTTP context it uses

a standard vocabulary complemented by as set of constraints and guided by a hand full of principles.

There are differing implementations of “RESTful” web services that are technically “RESTful” however

are merely hybrid combinations of XML-RPC or misuse of the HTTP methods as defined by their

intended purpose. This document intends to clarify some of this confusion regarding what it actually

means to be considered a web services as “RESTful” within the HTTP context.

RESTful web services are implemented using HTTP and the principles of REST. A RESTful web service a

collection of resources defined by:

1. The base URI

2. A set of supported operations defined by HTTP Methods

3. The internet media type consumed and produced by the web service

4. The API must be hypertext driven.

3.1 HTTP Request Methods
REST uses the well defined HTTP request methods; GET, PUT, POST, DELETE, HEAD, and OPTIONS to

retrieve, create, and manipulate resources. Use of these HTTP methods indicates to the server how the

state of a resource is to be handled.

3.1.1 GET

The HTTP GET method is used to retrieve a representation of a resource.

3.1.2 PUT

To create a new resource or modify an existing resource the HTTP PUT method is used.

NOTE:
To determine the appropriate usage between PUT and POST, the client uses PUT when it is in charge of

deciding what the new URI resource should be when it is created and the client uses POST when the

server is in charge of assigning a new URI to the resource being created.

ZCSolutions Army Training Information-Migrated (ATIA-M) System Sustainment Services

10 December 2012 Technical Approach Design And Development of RESTFul Web Services 5

3.1.3 POST

The POST method is used create a new resource. Typically the client only needs to know the parent URI

resource in which the server creates the resource under the parent. The Server response is usually HTTP

Status 201 (“Created”) with the location header containing the URI of the newly created resource.

3.1.4 DELETE

HTTP DELETE is used to delete an existing resource.

3.1.5 HEAD

 The HTTP HEAD method is used to retrieve a metadata representation of the resource to include the
HTTP headers. It is identical to the GET method without a message body in the response or the
representation itself.

3.1.6 OPTIONS

The HTTP OPTIONS method provides information about the request and response options a client is

allowed to do to a resource and the resource representations that are available.

3.2 Safety and Idempotencey
The HTTP GET and HTTP HEAD methods are considered “Safe” when used correctly. Since the request
does not change any resource state. The request can be issued multiple times causing no harm.

HTTP PUT and HTTP DELETE methods are idempotent. The idea behind idempotence is that there are no
side effects issuing the same request multiple times. DELETE a resource and it is gone. Issue another
DELETE and it is still gone the resource state does not change. The same with PUT, resending the PUT
does not change the resource state. HTTP GET and HEAD also share this property.

The HTTP POST method is neither safe nor idempotent. This method is the most problematic method for
REST. Usually POST is used to create or modify resources and should be carefully implemented to
prevent duplicates since it is not idempotent.

3.3 REST Principles
The REST principles are

1. Addressability

2. Uniform Interface

3. Statelessness

4. Representations

5. Hypermedia as the Engine of Application State (HATEOAS)

4 RESTful Resource-Oriented Architecture
Resource Oriented Architecture is a specific set of rules for the design and implementation of RESTful

web services. Resource-oriented architecture places the importance on the resource itself and is strictly

web oriented. The RESTful architecture is not restricted to resources over the HTTP protocol. By

combining the method information restricted to the HTTP method, as used in RESTful architectures,

ZCSolutions Army Training Information-Migrated (ATIA-M) System Sustainment Services

10 December 2012 Technical Approach Design And Development of RESTFul Web Services 6

with the scoping information in the URI described by the Resource-Oriented Architecture provides a

powerful technique consisting of four concepts.

4.1 The Resource
A resource is any item, object, idea, or thing that is important enough to be referenced in of it-self.

4.2 The Resource URI
A resource has to have at least one Uniform Resource Identifier (URI). The URI is the name and the

address of the resource.

4.3 The Resource Representations

4.4 The Links between

5 Service Design
1. Determine the data set

2. Separate the data set into resources

a. For each kind of resource:

i. Name the resource with a URI

ii. Make the resource available - expose it via HTTP method(s)

iii. Determine/design the representation format(s) accepted by the client

iv. Determine/design the representation format(s) served to the client

v. Integrate this resource into existing resources using hypermedia links

vi. Consider what’s supposed to happen - send appropriate response code

vii. Consider what might go wrong – send appropriate response code

3. URI Design
4. URI templates
5. Nouns
6. Plural Noun for collections
7. Singular Noun for a single resource
8. Query parameters
9. Examples

a. JAVA
b. Ruby
c. .NET

6 Client
HTTP Headers
Authentication
HTTP Methods
 Verbs
Resources

ZCSolutions Army Training Information-Migrated (ATIA-M) System Sustainment Services

10 December 2012 Technical Approach Design And Development of RESTFul Web Services 7

Representations
HTTP Response Codes
Links between
 Pagination
 HATEOS – Hypertext Engine of

7 Rules
The following rules are listed in the “REST API Design Rulebook by Mark Masse’ (O’Reilly), Copyright

2012 Mark Masse’, 978-1-449-31050-9.” They are not all inclusive, however those TCM-ATIS deems

important to establish as best practices.

7.1 URI Format
 Rule: A forward slash (/) must be used to indicate a hierarchical relationship

Rule: A trailing slash (/) should not be included in a URI
 Rule: Hyphens (-) should be used to improve the readability of a URI
 Rule: Underscores (_) should not be used in a URI

Rule: Lowercase letters should be preferred in URI paths

7.2 URI Path Design
Rule: A singular noun should be used for resource names
Rule: A plural noun should be used for collections
Rule: CRUD function names should not be used in a URI

7.3 URI Query Design
Rule: The query component of a URI may be used to filter collections
Rule: The query component of a URL should be used to paginate a collection

7.4 Request Methods
Rule: GET and POST must not be used to tunnel other request methods
Rule: GET must be used to retrieve a representation of a resource
Rule: HEAD should be used to retrieve response headers
Rule: PUT must be used to both insert and update a stored resource
Rule: PUT must be used to update mutable resources
Rule: POST must be used to create a new resource in a collection
Rule: DELETE must be used to remove a resource from its parent

7.5 Response Methods
Rule: 200 (“OK”) should be used to indicate nonspecific success
Rule: 200 (“OK”) should not be used to indicate errors in the response body
Rule: 201 (“Created”) must be used to indicate successful resource creation
Rule: 202 (“Accepted”) must be used to indicate successful start of an asynchronous action
Rule: 204 (“No Content”) should be used when the response body is intentionally empty
Rule: 301 (“Moved Permanently”) should be used to relocate resources
Rule: 302 (“Found”) should not be used
Rule: 303 (“See Other”) should be used to refer the client to a different URI

ZCSolutions Army Training Information-Migrated (ATIA-M) System Sustainment Services

10 December 2012 Technical Approach Design And Development of RESTFul Web Services 8

Rule: 304 (“Not Modified”) should be used to preserve bandwidth
Rule: 307 (“Temporary Redirect”) should be used to tell clients to resubmit the request to

another URI
Rule: 400 (“Bad Request”) may be used to indicate nonspecific failure
Rule: 401 (“Unauthorized”) must be used when there is a problem with the clients credentials
Rule: 403 (“Forbidden”) should be used to forbid access regardless of authorization state
Rule: 404 (“Not Found”) must be used when a client’s URI cannot be mapped to a resource
Rule: 405 (“Method Not Allowed”) must be used when the HTTP method is not supported
Rule: 406 (“Not Acceptable”) must be used when the requested media type cannot be served
Rule: 409 (“Conflict”) should be used to indicate a violation of resource state
Rule: 412 (“Precondition Failed”) should be used to support conditional operations
Rule: 415 (“Unsupported Media Type”) must be used when the media type of a request’s

payload cannot be processed
Rule: 500 (“Internal Server Error”) should be used to indicate API malfunction

7.6 HTTP Headers
Rule: Content-Type must be used
Rule: Content-Length should be used
Rule: Location must be used to specify the URI of a newly created resource

7.7 Representation Design
Rule: A consistent form should be used to represent links
Rule: A consistent form should be used to represent media type formats
Rule: A consistent form should be used to represent errors

